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ABSTRACT: The quantization of geometry arising from loop quantum gravity (LQG) is undetermined up to a free parameter

 , called the Immirzi parameter. The value of this parameter is often fixed by comparing the LQG result for the black hole 

entropy with the Bekenstein-Hawking entropy formula and the quasinormal mode spectrum of the black hole. Some authors 

have suggested that energy is spread over the degrees of freedom at a general holographic sphere according to the 

equipartition rule. We find that one arrives at a new value if the LQG quantum states at the horizon are subjected to obey the 

equipartition rule.  
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 INTRODUCTION   
Exploiting the resounding similarity of the laws of 

thermodynamics to the black hole physics uncovered by 

Hawking and others [1- 4], and using purely imaginative 

thought experiments, Bekenstein boldly suggested that a 

black hole should possess an entropy proportional to its 

horizon area measured in Planck’s units G [5]. Hawking 

later showed by studying quantum fields in a black hole 

environment that a black hole horizon should radiate and 

should, therefore, possess temperature [6]. This temperature 

turned out to be  

.
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Here
2

BH Sg GMR  is the surface gravity at the horizon of 

a Schwarzschild black hole of mass M and radius SR . 

Shortly after Hawking's discovery, it was realized that this 

result should not be restricted to black holes alone. Unruh 

showed that a uniformly accelerating observer through a 

Minkowski vacuum will perceive a heated horizon with 

temperature proportional to the observer's acceleration, 

/ 2T a 
 

[7]. These results further strengthened the 

thermodynamic description of horizons. With a combination 

of the area-mass relation,  
2

16 ,A GM  for a black 

hole and the first law of thermodynamics at the horizon, 
1 / ,T S M     the Hawking temperature formula leads to 

the black hole entropy as       
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This is called the Bekenstein-Hawking entropy formula. 

Equation (2), which is based on classical and semi-classical 

ideas culminates within itself gravity, quantum physics, and 

statistical mechanics and. 't Hooft [8] elevated this result to 

the status of a general principle – the so-called holographic 

principle – that is, quantum mechanics and general relativity 

requires that the three-dimensional information describing an 

isolated system in a region of space can be represented by the 

boundary of the region and is limited by the area of this 

boundary, with the number of microscopic degrees of 

freedom as finite and proportional to the area of the boundary 

in Planck's units. 

One recalls that Padmanabhan [9,10] established an identity, 

/ 2S M T relating the entropy of a general horizon to its 

temperature T and the active gravitational mass M  the 

boundary encloses. Assuming that there are N  Planckian 

degrees of freedom at the horizon, Padmanabhan’s relation in 

combination with (2) can be reinterpreted as the equipartition 

of energy  
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Interestingly, Verlinde [11] conjectured that Newton's 

gravitational law can be shown to arise as an entropic force if 

one assumes that the thermodynamic degrees of freedom at a 

general holographic sphere obey the equipartition of energy 

as depicted in (3). Following Verlinde’s holographic setup in 

the framework of loop quantum gravity (LQG) [12], Smolin 

came up with Newton’s gravity by assuming the 

equipartition to hold (due mainly to spherical symmetry) at a 

general holographic sphere.   

In this paper, we note that the value of the Immirzi parameter 

( ) of LQG [13] used by Smolin in his derivation of 

Newton’s gravity is inconsistent with the equipartition rule. 

In fact, as assumed by Smolin, if the equipartition rule holds 

for the LQG degrees of freedom at the black hole horizon or 

a general holographic sphere, then it leads to a different 

value of the  parameter as compared to the values 

conceived previously [14,15]. In the following section, we 

first briefly comment on some of the earlier works regarding 

fixing the Immirzi parameter of LQG and then extend our 

new approach to ascertain the value of the   parameter. 

Section 3 is devoted to discussion. 

2. FIXING THE IMMIRZI PARAMETER   OF LQG 

Loop quantum gravity (LQG) is a canonical quantization of 

the classical gravitational field and uses spin networks as a 

basis for its Hilbert space [16,17]. Spin networks are graphs 

whose edges carry labels  0,1/ 2,1,...j as the 

representations of the gauge group SU(2) of the theory. 

Amongst various approaches to quantum gravity, LQG 

seems to be the sole theory that has produced results 

regarding geometrical spectra from the first principle. A key 

result of LQG is that the area of a given region of space is 

quantized in such a way that if a surface is punctured by an 

edge of the spin network, carrying a label j , the surface   
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acquires an element of Planck sized area 

.j jA G                                                        (4)  

Here  8 1j j j    with  as a free undetermined 

parameter of the theory, called the Immirzi parameter [13]. 

This parameter is known to have no effect on classical 

gravity but appears unavoidably in the quantized version of 

the theory. The actual physical meaning  is still unknown. 

The theory however cannot produce useful predictions unless 

this parameter is worked out. The value   is often fixed by 

comparing the LQG results with the known black hole 

dynamics. In [14,15], it was proposed that  can be fixed by 

the requirement that the quantum gravity results reproduce 

the Bakenstein-Hawking entropy.   

In LQG the degrees of freedom that determine the black hole 

entropy are the spin network edges puncturing the horizon. 

Statistically, the dominant contribution to the entropy comes 

from the lowest possible non-zero spin minj , so that the 

number of edges puncturing the horizon of the area A  

becomes 

min

min

.j

j
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N
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Given the multiplicity of the state minj  min2 1j   the 

entropy of the black hole is calculated as the logarithm of the 

dimension of the Hilbert space living on the horizon [14,15]:
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minln(2 1).LQG

j

A
S j
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A comparison of the LQG result (6) min 1/ 2j  with the 

Bekenstein-Hawking formula (2) yields the value  as 

ln 2
.
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       Dreyer [18] arrived at a different value of the Immirzi 

parameter by exploiting Hod's [19] semi-classical argument 

based on the quasinormal mode (QNM) spectrum of a 

Schwarzschild black hole [20,21]. Dreyer’s argument led to 

the value of the Immirzi parameter as  

       
ln 3

.
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But this approach suggested that the dominant contribution 

should come from edges 1j  and that the true gauge group 

of the theory should be considered as SO(3) rather than 

SU(2). It remains obscure as to which group, SU(2) or SO(3), 

should now be adopted as the gauge group of the theory.   

Following the LQG version of Verlinde's  holographic set of 

equations, Smolin obtained the gravitational law in the form 

[12] 
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Here M is the active gravitational mass enclosed by a 

holographic sphere. The quantity in the brackets including 

the dimensionless fudge factor 
22(ln 2) /f  was 

interpreted as representing the passive gravitational mass m  

of a particle near the holographic screen within its Compton 

wavelength approximately equal to x .   

In the derivation of (9), the equipartition of energy   
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1
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was assumed due only to spherical symmetry. The value of 

the Immirzi parameter given by (7) was used in the 

derivation. But, as follows, one can readily prove that the use 

of the equipartition of energy at the black hole horizon or a 

general holographic sphere of radius R  leads to a different 

value of the Immirzi parameter. Substituting 
minjN  from (5), 

with
24A R , into (10) the temperature of the screen can 

be obtained as   

min
.

2

R
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                                      (11)    This 

equation matches precisely with the Hawking-Unruh 

temperature formula provided one choses 
minj as unity. 

Thus,   must be chosen as  

 min min

1

8 1j j



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  

                        (12)  

if the equipartition of energy has to produce the correct 

temperature law. Assuming SU(2) to be the underlying group 

(that has to be fixed from elsewhere) and taking the 

min 1/ 2j   edges as dominant, the value of   can be 

fixed as 
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With this new value of , Smolin’s result (9) would be 

modified to the one with a new fudge factor ln 2 / 2f  .   

 
3.  DISCUSSION 
The equipartition of energy imposed on the edges of LQG 

puncturing general horizon yields the correct Hawking-

Unruh temperature formula provided the Immirzi parameter 

assumes the value given by (12), thereby yielding the actual 

operational area element to be exactly the Planck area. With 

this new value , one may suggest that the black hole 

entropy should be evaluated, not as equal, but proportional to 

the logarithmic measure of the dimensionality of the Hilbert 

space inducing the horizon metric. In this way, the LQG 

calculation for the black hole entropy wi min 1/ 2j  ll 

effectively coincide with Bekenstein's formula [5].  

We come across no direct comparison of a quantum result for 

entropy in (6) with the semi-classical result (2). Neither, at 

any point, does this formulation suggest an alteration of the 

theory's group structure. The assumption of the 'classical' 

equipartition in the quantum realm, however, is not that 
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obvious. One may be tempted to delve deeply to explore how 

energy is distributed over the quantum degrees of freedom.  

The value of  fixed at a general holographic screen should 

possess universal validity. However, it still remains obscured 

why is  absent in classical gravity but appears unavoidably 

in the quantized version of the theory. It is also elusive as to 

what this parameter account for.   
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